If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2+21u+20=0
a = 4; b = 21; c = +20;
Δ = b2-4ac
Δ = 212-4·4·20
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-11}{2*4}=\frac{-32}{8} =-4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+11}{2*4}=\frac{-10}{8} =-1+1/4 $
| 4=2.75^n | | h+(h-2)=14 | | -(-5+p)=5 | | 3/2c=12 | | -4(n-4)=16 | | h-(h-2)=14 | | 4x+4=195 | | 3/c=12 | | 8m+13=12+8m | | 6(x-3)-7=2(2x+3) | | 3/·c=12 | | 12=k*6/12 | | -15=5b+13-2b | | -11=r-5 | | x+3+2x-1=44 | | 12=k*6÷12 | | 4+-9x=-14 | | x=-1.5x+10 | | t/2+6=-7 | | 1/2*x+10=1/4*x+54 | | 5/2=x/6 | | 2-u/3=2 | | .3x+1+3x+1=x+2+10 | | h−12=6 | | 20/x=-4/7 | | 2(x+1)=4x-4/8 | | 5x=x2-14 | | 4+16n=n+34 | | X+5/6x=3x-7 | | (X-1)(x+3)(x+7)=0 | | 21/3p=-11 | | -3x^2-3x=-5 |